A Hand Shape Recognizer from Simple Sketches

Xiaolong Zhu, Ruoxin Sang, Xuhui Jia, Kwan-Yee K. Wong
Department of Computer Science
The University of Hong Kong
Pokfulam Road, Hong Kong
{x1zhu, rxsang, xhjia, kykwong}@cs.hku.hk

Abstract—Hand shape recognition is one of the most important
techniques used in human-computer interaction. However, it
often takes developers great efforts to customize their hand shape
recognizers. In this paper, we present a novel method that enables
a hand shape recognizer to be built automatically from simple
sketches, such as a “stick-figure” of a hand shape. We introduce
the Hand Boltzmann Machine (HBM), a generative model built
upon unsupervised learning, to represent the hand shape space
of a binary image, and formulate the user provided sketches
as an initial guidance for sampling to generate realistic hand
shape samples. Such samples are then used to train a hand shape
recognizer. We evaluate our method and compare it with other
state-of-the-art models in three aspects, namely i) its capability
of handling different sketch input, ii) its classification accuracy,
and iii) its ability to handle occlusions. Experimental results
demonstrate the great potential of our method in real world
applications.

Index Terms—hand shape, sketch, generative model

I. INTRODUCTION

Hand shape recognition is an essential technique in natural
user interface, particularly in sign language recognition, virtual
reality and computer entertainment [1]. In recent years, the
great progress in depth sensors (e.g., Kinect [2] and Intel
Gesture Camera [3]) has made their prices more affordable,
which in turn increases their utilities in hand shape recognition
in daily life. By using a depth camera, it is no longer difficult
to segment and track a hand from an image sequence. A
binary hand shape segmentation can often be extracted from
a depth image as a hand shape representation [4], [S], which
serves as an input for hand shape recognition. However, it
is a well-known fact that the hand shape of a single gesture
may vary among different people due to different applications
or cultures. A developer of a hand shape recognizer therefore
needs to collect a huge amount of samples from many subjects
in order to train a robust recognizer for his application, and
he may need to repeat this process if the accuracy of the
recognizer is not satisfactory or if new hand shapes are needed.
This often takes the developers a lot of time to refine their
recognizers iteratively. In addition, many developers nowadays
come from the design community, and they do not necessarily
have the background in computer vision and pattern recogni-
tion. Hence it may be a great barrier for them to manage the
training data and train a customized hand shape recognizer by
themselves.

978-1-4799-0883-7/13/$31.00 (©2013 IEEE

Shape Image Hand Boltzmann Machine Shape Sample Classification
=

" o- M1~ i
. o3

Testing g n

"""""""""""""""" =h g’

Training h [g

Sketches D

H v

Offline

J
B
o

| Unsupervised Learning

LIRXTZTERY YIS

Fig. 1. Illustration of our method. The hand shape model is firstly learned
from the dataset, and the images are sampled from this model to train a hand
shape classifier. During testing, a shape image is first preprocessed through
HBM and then used as the input for the shape classifier.

From a probabilistic perspective, acquiring samples for
different hand shapes can be viewed as drawing samples
from the conditional probability over different hand shape
configurations. This suggests that a sampling method can
be used to collect hand shape samples for training if the
distribution of the hand shape image is known. In other words,
if we can build up a probabilistic hand shape model, it is not
necessary to collect a large amount of samples for training.
Since the probabilistic hand shape model models the joint
probability of pixels in a hand shape image, a complete hand
shape image can be sampled even from partially observed
data [6]. This suggests that intuitive drawings like simple
sketches of a hand shape can be used to generate similar hand
shape images.

In this paper, we address the following problem: is it
possible for developers to use simple sketches of hand shapes
instead of a large collection of training data to develop their
customized hand shape recognizers? To solve this problem, we
propose a mid-level representation to model the hand shape
images in a probabilistic fashion, which allows generation of
new data that are different from the training samples (see
Fig. 1). Hence it becomes possible for developers to customize
their hand shape recognizers by simply sketching the hand
shapes of their interests.

Our method is inspired by the idea of unsupervised learning
for image completion. Successful applications can be found in
face completion [6], shape completion [7], efc. On the other
hand, sketch-based systems show great potential for describing

a

(a)

Fig. 2.

hihidhihd

o

()

(a) The structure of RBM. (b)-(e) The illustration of different undirected models for a hand shape image. From left to right, they are RBM, DBM,

ShapeBM and our proposed HBM. Each node in the visual layer corresponds to a pixel in the image.

and retrieving images from a large database [8]. We combine
these ideas to enable users to generate hand shape images by
sketching the hand shape in their minds. Our method consists
of two components: firstly, a probabilistic hand shape model,
namely Hand Boltzmann Machine (HBM), is introduced to
represent a binary hand shape image, and secondly, the sketch
by a user is modeled as constraints in generating samples for
training a hand shape recognizer. Given an input hand shape
image, it is first preprocessed by the model and the output will
serve as the input for hand shape recognition. By formulating
the problem in this way, we make the following contributions:

e We introduce the Hand Boltzmann Machine, which is
tailored for the structure of a hand shape image, to
generate realistic sample images.

« It is flexible and intuitive for developers to develop their
hand shape recognizers using simple sketches instead of
collecting tens of thousands of hand shape images in
different hand shape configurations;

¢ Our method can deal with occlusions and remove noisy
pixels by preprocessing the partially observed hand shape
images using the learned model.

o Customization of a hand shape recognizer is separated
from data acquisition, so it is much easier for developers
to collect (generate) hand shapes for training. This has
great potential for industrial use: data providers may
focus on making good models while developers can
customize their classifiers in less time;

II. LITERATURE REVIEW

There have been plenty of methods modeling 2D shape
images. Shape templates [9] and shape fragments [10], [11]
are two common non-parametric methods for a large database
of image shapes. These methods cannot generate novel and
realistic shapes as there is no explicit formulation to validate
the composition of different shapes or shape fragments. On the
other hand, probabilistic models such as MRFs and CRFs [12]
model a shape image as grid-structured potentials of connected
pixels. However, they cannot capture higher level properties,
such as curvature and convexity, of the shapes although local
smoothness is explicitly constrained.

Recently, deep architectures have shown great potentials in
capturing complex global shape properties. By introducing the
layer-based structure, such information can be represented in
the nodes of the higher layer. In the followings, we first review
several representatives of these models (See Fig. 2).

o Restricted Boltzmann Machine. It is a two-layered
undirected model with a visual layer v representing
binary image pixels and a hidden layer h representing the
latent correlation among these visual nodes. The energy
function is defined as

E(v,h)=-a'v—b'h—v'Wh,)

with the parameters {a, b, W} as illustrated in Fig. 2(a).
The distribution over v is obtained by summing up all
over the hidden variables, i.e., P(v) = £ >, e”F(v:h),
where Z is a normalization term.

o Deep Boltzmann Machine. In order to capture high
level complex correlation between hidden variables, a
deeper architecture is often pursued. Such a structure is
often referred to as Deep Boltzmann Mchine (DBM),
which stacks several RBMs to build up a hierarchical
representation. Without loss of generality, we use a 3-
layer architecture to model its connections. The energy
function has the following form

E(v,h;,hy)=—a'v—b'h; —c'hy
— vTW1h1 — hIWghg

o Shape Boltzmann Machine. ShapeBM is proposed to
deal with the problem when there are only a small amount
of training data. Local receptive field is enforced as the
block-based connection between the visual layer v and
the first hidden layer h;. Each patch overlaps with its
neighbors to a certain extent and weights are shared
between four sets of hidden units and visual nodes. Its
energy function is

E(v,h;,hy)=—a'v—b'h; —c'h,
— Zijlh” — Z hLWghg (3)

@

Nevertheless, as far as hand shape images are considered,
we notice that the palm pixels are independent of the finger

pixels and the hand shape often mainly differ in finger config-
urations. Fig. 3 shows the weights learnt by RBM and DBM
for hand shape images. We can observe that the palm region
has little correlation with the finger region. This suggests
that connectivity can be carefully imposed. We introduce the
Hand Boltzmann Machine (HBM) to consider the connection
between the central palm pixels and the peripheral finger pixels
separately, and merge their connection in an upper hidden
layer.

III. HAND BOLTZMANN MACHINE (HBM)

Let a hand shape image be represented by a binary vector
v with pixel v; € {0,1}, and P(v) describes how probable
v appears in the hand shape space. As the state of one pixel
depends on that of the others, their latent correlations can be
characterized as links between the elements {v; } of the image
vector v and the binary nodes {h;} of the hidden variables
h. Similar to DBM and ShapeBM, HBM has two layers of
latent variables. Moreover, the connectivity between the visual
layer and the first layer is manually set according to Fig. 3(c)
and 3(d). It consists of two components, h,, for central palm
pixels and h; for peripheral finger pixels. Each node of hy
is connected to all finger pixels in the visual layer, and each
node of h, to all palm pixels in the visual layer. These two
regions of the visual layer overlap with each other by b-pixel
width to enforce smoothness of the hand shape. In the second
layer, each node is fully connected to all nodes in the first
layer, h,, and hy. The joint probability of v, h;, hyand hy is
given by

1
P(V, hp7 hf, h2) = EeiE(v’hP*hf’hﬂ, 4)

where Z = Y e F(vhphrh2) g 4 normalization term, and
the energy function is

E(v,hy,hy hy)=—a’'v—b h,—bihy—c'h,
—v, Wi,h, —vi Wishy 5)
—h) Wy,hy — h; Wyshs.
By summing over all possible configurations of h,, hy and
h,, we obtain final marginal distribution of the hand shape
image v by
e~ E(v.hphyho) (6)
h,.hy hy
The first layer encodes different finger shape variances and
palm variances, which can be seen as the local properties of
hands. The second layer imposes global constrains, such as

global shape smoothness, finger configuration, efc. It holds
the higher level information of different hand shapes.

A. Learning the Model

We follow the procedure of training a DBM [13]
to maximize the log-likelihood log P(v;©) of the ob-
served hand images with respect to the parameters © =
{a,bp,bs,c, Wi,, Wi, Wy,, Wy} for a Hand Boltzmann
Machine model.

(c)

(d)
Fig. 3. (a) Weights W, for visual nodes of 4 hidden units of a trained
RBM. (b) Weights of a trained DBM. Note that the palm pixels in the center
of the image have strong correlation with each other, although weights vary a

lot for different hidden units. (c) The active finger pixels (in white) connected
to hy. (d) The active palm pixels (in white) connected to hy,.

There are two phases to learn a HBM model. In the first
phase, a greedy, layer-by-layer pre-training algorithm is used
to learn one layer at a time. It starts from the bottom visual
layer v, and learns Wy, for the palm RBM and W; for
finger RBM simultaneously. This is done by Persistent CD
algorithm [14]. The connectivity of palm and finger RBMs is
defined manually by considering the central-peripheral prop-
erty in Fig. 3. After both RBMs are trained, the values of
nodes in h;, and h; are inferred according to Eq. 7 for each
training instance to initialize the upper RBM. In the second
phase, three RBMs of two layers are composed to create a
HBM model. The parameters obtained in the pre-training are
used to initialize the HBM model which is fine-tuned in the
second phase still using contrastive divergence algorithm. In
this way, global and local variances of the hand shape images
spread out through the bottom-up input and top-down feedback
process.

IV. TRAINING HAND SHAPE CLASSIFIER FROM SKETCH
INPUT

After the hand shape model is obtained, it is ready to use
sketch to generate samples for training a hand shape classifier.

A. Sketch Input as Hard Constraint in Sampling

Interestingly, each node v; or h; in the same layer is
conditionally independent of other nodes once the opposite
layer is observed, and they are conditionally distributed as

P(v; =1|hy,hy) =o(a/ + 3 ,cp Wf;h; +ier Withy)

P(h), = 1v,h2) = 00 + Xiep Wit + 2, WHh)

P(hy = 1|v,ha) = o by + 30, r Wigvi + 32, Waghs)

P(h% = 1|hp7hf) = U(Cj + Zz Wzli:h;)) + Zz Wzl}h?)
where o(x) = 1-&-% is the sigmoid function, and P and F
denote the indices of palm and finger pixels. This allows for
the layerwise Gibbs sampling as illustrated in Fig. 4. v, h,
h; and h are iteratively sampled in a layer by layer fashion
according to Eq. 7

Given a sketch image I, each of its pixels p; has one of the
three possible values: {hand, background, unknown}. In the

s
@ rrm
SMEAAAAR]
My

L

vy
EIRTETN]

X rrirrrTa
()

(a) (b) RBM ¢) DBM

Fig. 5.

(d) ShapeBM (e) HBM

Some examples after 10-step Gibbs sampling. (a) Sketches drawn by the users. Black strokes indicate background pixels, white strokes indicate

hand pixels and grey color indicates unknown pixels. Each sketch is first scaled to 32 X 32 pixels and then used as input to different models. (b) Samples
generated by RBM. (c) Samples generated by DBM. (d) Samples generated by ShapeBM. (e) Samples generated by our HBM.

" \ /’\

h,. by @ \@] /... @

© @009 ©000 ©000
B HEH

Fig. 4. Sampling procedure with a sketch. In the first iteration, only hand
pixels are considered as 1 for sampling and the rest as 0. In the following
iterations, the sampled vector is constrained by the sketch, whose hand pixels
are set to be 1 and background pixels to be 0, before being used as the input
for the next iteration.

n-step
sample

first step of sampling, all background pixels and unknown
pixels are set to 0, and the rest hand pixels are set to 1. In
the following steps, only hand and background pixels are
constrained to be 1 and 0 respectively. After n-step Gibbs
sampling, we use the sample ¥ as the approximated hand shape
and its hidden state flg to train the classifier.

B. Building up a Classifier from Samples

For each sketch, we run sampling m times to collect both
visual sample vectors {¥(™} and hidden sample vectors
{flém)}. They are further used for training either linear or
non-linear classifier. In our experiment, we test two settings:

o A hand shape classifier of visual input is trained from
the inferred hand shape samples generated from sketches.
This is referred to as visual classifier.

e« A hand shape classifier of hidden state variables is
trained from the hidden vectors corresponding to the
aforementioned hand shape samples. This is referred to
as hidden classifier.

C. Testing

During testing phase, a normal hand image is preprocessed
by the model. This process is necessary to complete the
partially observed data and remove noisy pixels. After n-
step sampling, the sample of visual layer is used for visual
classifier, while that of hidden layer is used for hidden
classifier.

V. EXPERIMENTAL RESULTS

In our experiment, hand images were obtained from Intel
Gesture Camera [3], and thresholded to produce binary seg-
mentations and normalized to 32 x 32 pixels. We recorded
images of different hand configurations of 6 subjects. Each
subject performed 15 hand postures and some free hand
movement, e.g., jiggle. We trained four models, namely RBM,
DBM, ShapeBM and HBM, with 70% of these images and
used the rest images for testing. There were 500 hidden nodes
in the RBM model and they were trained for 500 epochs.
The DBM model consisted of 1000 and 200 nodes for h;
and hy. The first layer was pre-trained for 500 epochs and
the second layer for 500 epochs. After pre-training, the whole
model was fine-tuned for 300 epochs. The ShapeBM model
had 4 patches overlapped by 4-pixel width and for each patch
there were 500 hidden nodes in the first layer. These 2000
hidden nodes were fully connected to 200 hidden ones in the
upper layer. The first and second layer were pre-trained for
500 and 500 epochs respectively before the model was jointly
trained for another 300 epochs. Finally for HBM, the central
palm region and the peripheral finger region overlapped with
each other by 4-pixel width and there were 500 and 1000 nodes
for the palm and finger region respectively in the first layer,
and 200 nodes in the second layer. Similar to the DBM and the
ShapeBM models, the HBM model was trained for 500 and

500 epochs for the first and second layer, and fine-tuned for
300 epochs in the joint training. We evaluated our method in
three aspects, namely its capability to handle different sketch
input, its classification accuracy, and its capability to handle
occlusions.

A. Samples from different sketches

We developed a simple GUI that allows users to draw
sketches for each hand shape intuitively. Fig. 5 shows the
samples generated from the sketches collected from different
users. The shapes were sampled after 10 iterations. The
first three rows show that ambiguity can be eliminated by
introducing the background-pixel constraint, the next 5 rows
list some abstract sketches, and in the last row is a sketch
indicating hand posture which is unseen in the training set.
Follow the evaluation of [7], we investigate our results from
two aspects, realism and generalisation.

1) Realism: All four models can generate realistic samples.
RBM cannot change the shape too much due to its shallow
structure. DBM is the most connected model and we can see
great variation of the samples. ShapeBM puts more emphasis
on local block area, so the variation is more within a local
patch, such as the abnormal sample in the forth row. HBM
separates the connections between palm pixels and finger
pixels, so we can observe that the shape of palm varies
regardless of the variation of fingers. For instance, all fingers
of the samples look similar but all palms differ a lot in size
in the eighth row. This shows that the configuration of fingers
are independent of palms. Although different style of sketches
are used here, we can see that they all generate meaningful
hand shape images.

2) Generalization: We also investigated whether these four
models can generate novel samples that are not seen in the
training set. In Fig. 5, the last row shows a novel hand
posture which is not in the training set. RBM generated similar
hand shape images, but they look the same. DBM generated
samples that are similar to the ones in the dataset. ShapeBM
generated samples with local changes, but some of the samples
are not realisticc. HBM generated shapes that do not only
follow the guidance but also look realistic. The various finger
configurations can be further eliminated by applying more
constraints.

B. Classification results

The subject was asked to draw 5 sketches for each class
respectively to describe the 15 classes as shown in Fig. 6.
100 samples were generated for each sketch. We trained
an SVM classifier using libsvm [15] and a generalized
linear model using glmnet [16] on these images and 200
hand shape images of 6 different subjects were used for
testing. We repeated this process 10 times using our M atlab
implementation on a standard PC with a 2.5 GHz dual-core
CPU.

Table I shows the results of visual and hidden classifiers for
different models, trained by different number of sketches, and
we have the following four observations.

1 Sketch 5 Sketches

Linear SVM Linear SVM

REM Y 32% 33.4% 59.7% 73%
ho 36% 38.8% 63.5% 79.2%
pEM VY 42.7% 43.2% 76.5% 82.73%
ho 53.9% 55.1% 69.2% 78.2%

v 41.8% 45.8% 75.1% 78%
ShapeBM p 53.9% 56.9% 78.1% 81.2%
mM Y 45.2% 46.4% 76.9% 82.5%
ho 55.3% 58% 83.5% 85.8%

TABLE 1

CLASSIFICATION ACCURACY

1) v vs. ho: The classification results of hidden layer are
better than those of visual layer for all models except for
DBM. It suggests that the hidden layer handles more shape
variance as it corresponds to higher level shape properties.
Moreover, we can use hidden code, whose length is 19.5% of
the visual one, as a compact representation of a shape image.

2) Number of sketches: We generated the samples from 1
to 5 sketches of different styles to illustrate different hand
postures. We found that the result improves with increasing
number of sketches. In other words, during the classifier
building phase, a user may draw additional sketch similar
to mistakenly classified result iteratively to “complete” the
classifier.

3) Linear vs. non-linear: svm performed better than
glmnet in most cases. It suggests that the high dimensional
vector is still non-linear no matter it is from the visual or
hidden layer.

4) HBM vs. the rest: RBM cannot deal with various shape
changes when the number of training sketches is small because
it only consider the local shape variance due to its shallow
structure. On the contrary, the samples vary a lot for DBM,
which in turn cause some misclassification when building the
classifier. In ShapeBM, block-based constraints are applied so
that it performs better than DBM as the samples for training
are less ambiguous. HBM applies the hand-specific constraint
so that the variance of palm and fingers are separated. We
found that classification benefit from such constraints so the
results are the best among these models.

More specifically, we investigated the confusion matrix of
classification results for HBM trained with 5 sketches (See
Fig. 6). We found that the visual confusion and hidden
confusion are quite similar.

In addition, the average time of processing one image during
testing is shown in Table. II. An image is preprocessed after
10-step sampling and Hidden classifiers by SVM were profiled
here. The time cost for classification are similar for the four
models, as the lengths of the input vectors for the SVM
classifiers are similar. However, it takes much more time for
deep models to pre-process the input image than RBM. As
the size of parameters in HBM model lies in between that of
the DBM model and the ShapeBM model, the time cost also

Sketches

Visual Classifier Hidden Classifier

Fig. 6. Confusion matrices of 15 classes listed in the top rows. The sketches
used for training is listed on the first row and the representative samples on
the second row.

lies in the middle. Note that the total time cost for the HBM
model is 89ms, which means that it is possible for real-time
applications after optimizing the code.

RBM DBM ShapeBM HBM
Preprocessing (ms) 5 125 93 86
Classification (ms) 2 4 3 3
Total 7 129 96 89
TABLE II

TIME COST DURING THE TESTING PHASE

C. Capability to Handle Occlusions

In real world applications, occlusions are very common for
hand shape recognition systems. For example, a hand may
hold some object, e.g., a pencil, an orange, a cup, efc. We
obtained a partial observation of the hand after thresholding on
depth and detecting skin color. In order to apply our method,
the complete hand shape image can be estimated by n-step
Gibbs sampling from the trained HBM (see Fig. 7). The
generated hand shape estimate is quite realistic even when
there is large occlusion. Therefore, preprocessing is necessary
here to generate hidden input and also complete the partial
observation, which makes it more applicable in real world
scenario.

ws1slelel¥]y
FIRF2 25252

Fig. 7. (a) Occluded images. (b) Initial inputs. (c) Interim results in sampling.
(d) Estimated complete images after sampling. (e) Original image examples.

VI. CONCLUSIONS

In this paper, we propose a method that allows a user to
define a hand shape recognizer by sketching the hand shape
intuitively. The core idea of our method is to learn a proba-
bilistic model, the Hand Boltzmann Machine, by unsupervised
learning from available hand shape images. Both sketches and
hand images can be viewed as the guidance for sampling
similar hand shape configurations from the probabilistic shape
model. This is similar to the view of poselet [17] on the
appearance space and its latent configuration space. It can also
be viewed as retrieving the samples similar to the sketch from
a probabilistic distribution instead of a database. Since our
method also benefits from the generative model to complete
partially observed data, it has great potential for the scenario
where there are intensive hand-object interactions in real world
applications. Note that, however, our method is based on the
appearance of hand shape, it thus cannot deal with large
variance of different hand poses simply by one single sketch.

REFERENCES

[1] Juan Pablo Wachs, Mathias Kolsch, Helman Stern, and Yael Edan,
“Vision-based hand-gesture applications,” Communications of the ACM,
vol. 54, no. 2, pp. 60, Feb. 2011.

[2] “Kinect for Xbox 360,” .

[3] “The CREATIVE Interactive Gesture Camera,” .

[4] Zhou Ren, Junsong Yuan, and Zhengyou Zhang, “Robust hand gesture
recognition based on finger-earth mover’s distance with a commodity
depth camera,” Proc. 19th ACM International Conference on Multime-
dia, pp. 1093-1096, 2011.

[5] Nicolas Pugeault and Richard Bowden, “Spelling It Out : Real-Time
ASL Fingerspelling Recognition,” in Proc. ICCV 2011 Workshop on
Consumer Depth Cameras for Computer Vision, 2011.

[6] Marc’ Aurelio Ranzato, Joshua Susskind, Volodymyr Mnih, and Geoffrey
Hinton, “On deep generative models with applications to recognition,”
in Proc. IEEE Conference on Computer Vision and Pattern Recognition.
June 2011, pp. 28572864, Ieee.

[71 SMA Eslami and Nicolas Heess, “The shape boltzmann machine: a
strong model of object shape,” in Proc. IEEE Conference on Computer
Vision and Pattern Recognition, 2012, pp. 406 —413.

[8] Hai Wang, Changhu Wang, Yang Cao, Zhiwei Li, and Lei Liqing
Zhang, “MindFinder: interactive sketch-based image search on millions
of images,” in Proc. 18th ACM International Conference on Multimedia,
New York, New York, USA, Oct. 2010, pp. 1605-1608, ACM Press.

[9] Dariu M Gavrila, “A Bayesian, exemplar-based approach to hierarchical
shape matching.,” IEEE transactions on pattern analysis and machine
intelligence, vol. 29, no. 8, pp. 1408-21, Aug. 2007.

[10] M.P. Kumar, PH.S. Ton, and A. Zisserman, “OBJ CUT,” in Proc.
IEEE Conference on Computer Vision and Pattern Recognition, 2005,
pp. 18-25.

[11] E. Borenstein, E. Sharon, and S. Ullman, “Combining Top-Down and
Bottom-Up Segmentation,” in Proc. CVPR 2004 Workshop on Perceptual
Organization in Computer Vision. 2004, pp. 1-8, Ieee.

[12] Yuri Y Boykov and M.-P. Jolly, “Interactive Graph Cuts for Optimal
Boundary & Region Segmentation of Objects in N-D Images,” in Proc.
8th IEEE International Conference on Computer Vision, 2001, number
July, pp. 105-112.

[13] Ruslan Salakhutdinov and Geoffrey Hinton, “Deep Boltzmann Ma-
chines,” in Proc. 12th International Conference on Artificial Intelligence
and Statistics, 2009, number 2, pp. 1-8.

[14] GE E Hinton, Simon Osindero, and YW W Teh, “A fast learning
algorithm for deep belief nets,” Neural Computation, vol. 18, no. 7,
pp. 1527-1554, 2006.

[15] Chih-Chung Chang and Chih-Jen Lin, “LIBSVM: A library for support
vector machines,” ACM Trans. on Intelligent Systems and Technology,
vol. 2, no. 3, pp. 1-27, Apr. 2011.

[16] Jerome Friedman, Trevor Hastie, and Rob Tibshirani, ‘“Regularization
Paths for Generalized Linear Models via Coordinate Descent.,” Journal
of statistical software, vol. 33, no. 1, pp. 1-22, Jan. 2010.

[17] Lubomir Bourdev and Jitendra Malik, “Poselets: Body part detectors
trained using 3D human pose annotations,” in Proc. 12th IEEE
International Conference on Computer Vision, 2009, pp. 1365-1372.

